# Introduction

What is ready to be done under this assignment is to train a machine learning model. Here I chose a laptop price predictor application. The reason for doing something like this is that people started working from home when there were epidemic conditions. Then because of the use of laptop and people are looking to buy a new one, this application has been prepared to easily buy the laptop they want from the ecommerce web site. Here I used a dataset with details about the laptop. The columns here are company, type name, inches, screen resolution, CPU, ram, memory, Gpu, Operation system, weight and price. The machine learning techniques used to train here are linear regression, random forest, lasso, decision tree.

Data set link -

https://drive.google.com/file/d/1Gd4i6KdciQn1ecGn2zUUnGTckEWHWMAO/view?usp=sharin g

#### 1. Literature reviews

These literature reviews use research done by others in a way that is consistent with my views. I hope to study them and comment on my application. And it will also identify the challenges and problems these judges face.

Ayesha Ayub Syed, Yaya Heryadi, Lukas and Antoni Wibowo have developed an application to classify laptops using machine learning at IMECS Hong Kong (International MultiConference of Engineers and Computer Scientists) in 2021. The reason for doing something like this is that people started working from home when there were epidemic conditions. Then because of the use of laptop and people are looking to buy a new one, this application has been prepared to easily buy the laptop they want from the ecommerce web site. For this, we can select the suitable product based on Company, Product, Type Name, Inches, Screen Resolution, CPU, RAM, Memory, GPU, Operating System and Weight data. Here they have grouped laptops as budget, midrange and flagship. Logistic regression, Decision tree, Artificial Neural Network and vector machine have been used as machine learning models for this task. The results show superior accuracy of 99% for SVM (Linear Kernel), 98% for SVM (Gaussian Kernel), Polynomial Logistic Regression and Decision Tree Classifier, 91% with Artificial Neural Network and 72% with SVM (polynomial kernel). ) on our laptop product dataset. Here they have only broken the laptop into three sections (Syed, Heryadi and Wibowo, 2021).

Research professors Vaishali Surjuse, Sankalp Lohakare, Aayush Barapatre and Abhishek Chapke from the Department of Computer Technology and KDKCE & RTMNU University, India 2021 have developed the laptop price prediction system. They started doing this during the lockdown period in India. In India, demand for laptops increased after the nationwide lockdown, resulting in shipments of 4.1 million units in Q6 2021, the highest level in five years. They take the brand and model, RAM, ROM, GPU, and CPU as factors to determine the price. Listen explains in an article written for his master's thesis that a regression model built using a decision tree and a random forest regression tool can predict the price of a rented laptop with better accuracy than simple multivariate or multiple regression. They chose the decision tree algorithm on the basis that it is better at handling high dimensional data sets and is less likely to be over fitted and downsized. One weakness of these tests may be that they show no difference in basic metrics such as mean, variance, or standard deviation of simple regression with decision tree algorithm regression. More advanced (Surjuse *et al.*, 2022).

An application to estimate the cost of mobile phones has been created by students Pritish Arora, Sudhanshu Srivastava, and Professor Bindu Garg at Bharati Vidyapeeth (Deemed to be University) College of Engineering in Pune, India. To find and remove characteristics with the lowest computational cost that are less desired and redundant, certain feature selection techniques are applied. To reach the best level of accuracy, many categories have been applied. Results are measured by obtaining maximum accuracy and using the fewest characteristics possible. The claim is supported by the technique used to choose the optimal features and classifiers for the available data set. In any sort of marketing and business, this function may be used to identify the ideal product (with the lowest price and the greatest number of features). This study will be expanded in the future to offer a more comprehensive answer to the issue at hand and a more precise tool for pricing calculation (Arora, Srivastava and Garg, 2020).

### 2. Data set overview

The data set for my project had 1303 rows and 12 columns. The columns here are company, type name, inches, screen resolution, CPU, ram, memory, Gpu, Operation system, weight and price. This data set was a very noisy data set. And the presence of less amount of data here also became a little problematic. Although there is a small amount of data, more attention has been paid to its accuracy and this data set has been properly prepared for use.

| ] dt | .head()  |         |              |        |                                    |                            |      |                     |                              |       |        |             |
|------|----------|---------|--------------|--------|------------------------------------|----------------------------|------|---------------------|------------------------------|-------|--------|-------------|
|      | Unnamed: | a Compa | y TypeName   | Inches | ScreenResolution                   | Сри                        | Ram  | Memory              | Gpu                          | OpSys | Weight | Price       |
| 0    |          | D App   | le Ultrabook |        | IPS Panel Retina Display 2560x1600 | Intel Core i5 2.3GHz       | 8GB  | 128GB SSD           | Intel Iris Plus Graphics 640 | macOS | 1.37kg | 71378.6832  |
|      |          | 1 App   | le Ultrabook | 13.3   | 1440x900                           | Intel Core i5 1.8GHz       | 8GB  | 128GB Flash Storage | Intel HD Graphics 6000       | macOS | 1.34kg | 47895.5232  |
|      |          |         | P Notebook   |        | Full HD 1920x1080                  | Intel Core i5 7200U 2.5GHz | 8GB  | 256GB SSD           | Intel HD Graphics 620        | No OS | 1.86kg | 30636.0000  |
| 3    |          | 3 App   | le Ultrabook | 15.4   | IPS Panel Retina Display 2880x1800 | Intel Core i7 2.7GHz       | 16GB | 512GB SSD           | AMD Radeon Pro 455           | macOS | 1.83kg | 135195.3360 |
| 4    |          | 4 App   | le Ultrabook |        | IPS Panel Retina Display 2560x1600 | Intel Core I5 3.1GHz       | 8GB  | 256GB SSD           | Intel Iris Plus Graphics 650 | macOS | 1.37kg | 96095.8080  |

#### Figure 1: dataset head

It was difficult to find a dataset containing laptop prices in Sri Lanka so this is a Pakistani dataset. Therefore, its prices are also in the currency of that country.



Figure 2: data distribution

Before training a model it is very important to understand the nature of a dataset. As we can see here, there is a positively skewed one. A positive skewed distribution, also known as a rightskewed distribution, is a form of distribution in statistics in which the majority of values are clustered around the left tail and the right tail is longer. The distribution with a positive skew is the exact opposite of one with a negative skew.

# 3. Data set cleaning

### **3.1.Import libraries**



Figure 3: import libraries

First I imported the libraries and started building the model. My chosen libraries are numpy, pandas and matplotlib. The reason for choosing the numpy library is because when we have to work on numerical data, we prefer the numpy module. Pandas was chosen because when we have to work on tabular data, we prefer the pandas module. The other library was chosen because of the need to draw diagrams.

### **3.2.**Checking for null values

| <class 'pandas.core.frame.dutaframe'="">         RangeIndex: 1303 entries, 0 to 1302         Data columns (total 12 colums):         #       Column Non-Null Count         0       Unnamed: 0       1303 non-null         0       Unnamed: 0       1303 non-null         1       Company       1303 non-null         2       TypeKame       1303 non-null         3       Inches       1303 non-null         4       ScreenResolution       1303 non-null         5       Cpu       1903 non-null         6       Ram       1303 non-null         7       Memory       1303 non-null         9       0pict       1903 non-null         7       Memory       1303 non-null         9       0pict       1903 non-null         9       0pict       1903 non-null         10       Weight       1303 non-null         10       Weight       1303 non-null         11       Price       1303 non-null         11       Price       1303 non-null</class> | [] df.info()                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0       Unnamed: 0       1303 non-null int64         1       Company 1303 non-null object         2       Typekame       1303 non-null object         3       Inches       1903 non-null object         4       ScreenResOution 1303 non-null object         5       Cpu       1303 non-null object         6       Ram       1303 non-null object         7       Memory 1303 non-null object         8       Gpu       1303 non-null object         9       095ys       1303 non-null object         10       Weight       1303 non-null object         11       Price       1303 non-null object         12       Finite (function 1)       Spect                                                                                                                                                                                                                                                                                                | <pre><class 'pandas.core.fr<br="">RangeIndex: 1303 entrin<br/>Data columns (total 12<br/># Column</class></pre>                                                                | me.DataFrame'><br>Ps,0 to 1302<br>columns):<br>Non-Null Count Dtype                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| acheen treatent tweatent and the entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 Umnamed: 0<br>1 Company<br>2 Typetame<br>3 Inches<br>4 Screenfesolution<br>5 Cpu<br>6 Ram<br>7 Memory<br>8 Gpu<br>9 OpSys<br>10 Weight<br>11 Price<br>dtypes: float64(2), im | 1903 non-null int64           1303 non-null object           1304 non-null object |  |  |

Figure 4: checking null values

The first step in cleaning the dataset was checking for null values. It was found that the data set is free of null values.





Using the code df.isnull().sum() it was proved that null values are unique.

#### **3.3.Cleaning rows**

#### Convert numeric to ram and weight

In the dataset above, the data of ram and weight are in object form. But it cannot be used as such. Therefore, they should be taken as numeric. The string should have been deleted first. Then it was converted to numeric data. So the code below did it.





Both int and float are used to make these data numeric. The reason is that decimals are never used when mentioning ram. So the ram was converted to an int. But the data weight was obtained as a float because it has decimal places. After doing so, the dataset can be shown as follows.

| .head() |           |        |                                    |                            |     |                     |                              |       |        |             |
|---------|-----------|--------|------------------------------------|----------------------------|-----|---------------------|------------------------------|-------|--------|-------------|
| Company | TypeName  | Inches | ScreenResolution                   | Cpu                        | Ram | Memory              | Gpu                          | OpSys | Weight | Price       |
| Apple   | Ultrabook |        | IPS Panel Retina Display 2560x1600 | Intel Core i5 2.3GHz       |     | 128GB SSD           | Intel Iris Plus Graphics 640 | macOS |        | 71378.6832  |
| Apple   | Ultrabook |        | 1440x900                           | Intel Core i5 1.8GHz       |     | 128GB Flash Storage | Intel HD Graphics 6000       | macOS | 1.34   | 47895.5232  |
|         | Notebook  | 15.6   | Full HD 1920x1080                  | Intel Core i5 7200U 2.5GHz |     | 256GB SSD           | Intel HD Graphics 620        | No OS | 1.86   | 30636.0000  |
| Apple   | Ultrabook | 15.4   | IPS Panel Retina Display 2880x1800 | Intel Core i7 2.7GHz       |     | 512GB SSD           | AMD Radeon Pro 455           | macOS | 1.83   | 135195.3360 |
| Apple   | Ultrabook | 13.3   | IPS Panel Retina Display 2560x1600 | Intel Core i5 3.1GHz       |     | 256GB SSD           | Intel Iris Plus Graphics 650 | macOS |        | 96095.8080  |

Figure 8: clean dataset1

#### **Cleaning screen resolution column**

When you take the screen resolution column, it seems that several data are grouped together. Therefore, they had to be broken into separate columns. In that column, it is mentioned whether the screen is touchscreen, IPS or 4k. From that data, my model only gets Touchscreen and IPS.



Figure 9: Info of screen resolution column

Let's create a separate column for the touchscreen. Here it is taken as 1 if touchscreen is available and 0 if not.

| df[  |         |           | df['Scre | enResolution'].apply(lambda x:1    | if 'Touchscreen' in $\mathbf{x}$ el |     |                     |                              |       |        |             |             |
|------|---------|-----------|----------|------------------------------------|-------------------------------------|-----|---------------------|------------------------------|-------|--------|-------------|-------------|
| df.1 | head()  |           |          |                                    |                                     |     |                     |                              |       |        |             |             |
|      | Company | TypeName  | Inches   | ScreenResolution                   | Сри                                 | Ram | Memory              | Gpu                          | OpSys | Weight | Price       | Touchscreen |
|      | Apple   | Ultrabook |          | IPS Panel Retina Display 2560x1600 | Intel Core i5 2.3GHz                |     | 128GB SSD           | Intel Iris Plus Graphics 640 | macOS | 1.37   | 71378.6832  |             |
|      | Apple   | Ultrabook | 13.3     | 1440x900                           | Intel Core i5 1.8GHz                |     | 128GB Flash Storage | Intel HD Graphics 6000       | macOS | 1.34   | 47895.5232  |             |
|      |         | Notebook  |          | Full HD 1920x1080                  | Intel Core i5 7200U 2.5GHz          |     | 256GB SSD           | Intel HD Graphics 620        | No OS | 1.86   | 30636.0000  |             |
|      | Apple   | Ultrabook | 15.4     | IPS Panel Retina Display 2880x1800 | Intel Core i7 2.7GHz                |     | 512GB SSD           | AMD Radeon Pro 455           | macOS | 1.83   | 135195.3360 |             |
|      | Apple   | Ultrabook |          | IPS Panel Retina Display 2560x1600 | Intel Core i5 3.1GHz                |     | 256GB SSD           | Intel Iris Plus Graphics 650 | macOS |        | 96095.8080  |             |

Figure 10: Create column to touch screen



Figure 11: Bar plot of touchscreen (1 or 0)

The above bar plot shows the gap between laptops with and without a touchscreen. There seems to be a clear difference between the two. The number of non-touchscreens is very high.

| df |         | df['Scre  |        | tion'].apply(lambda x:1 if 'IPS'   |                            |     |                     |                              |       |        |             |             |   |
|----|---------|-----------|--------|------------------------------------|----------------------------|-----|---------------------|------------------------------|-------|--------|-------------|-------------|---|
|    | .head() |           |        |                                    |                            |     |                     |                              |       |        |             |             |   |
|    | Company | TypeName  | Inches | ScreenResolution                   | Сри                        | Ram | Memory              | Gpu                          | OpSys | Weight | Price       | Touchscreen | 1 |
|    | Apple   | Ultrabook |        | IPS Panel Retina Display 2560x1600 | Intel Core i5 2.3GHz       |     | 128GB SSD           | Intel Iris Plus Graphics 640 | macOS |        | 71378.6832  |             |   |
|    | Apple   | Ultrabook | 13.3   | 1440x900                           | Intel Core i5 1.8GHz       |     | 128GB Flash Storage | Intel HD Graphics 6000       | macOS | 1.34   | 47895.5232  |             |   |
|    |         | Notebook  |        | Full HD 1920x1080                  | Intel Core i5 7200U 2.5GHz |     | 256GB SSD           | Intel HD Graphics 620        | No OS | 1.86   | 30636.0000  |             |   |
|    | Apple   | Ultrabook | 15.4   | IPS Panel Retina Display 2880x1800 | Intel Core i7 2.7GHz       |     | 512GB SSD           | AMD Radeon Pro 455           | macOS | 1.83   | 135195.3360 |             |   |
|    | Apple   | Ultrabook |        | IPS Panel Retina Display 2560x1600 | Intel Core i5 3.1GHz       |     | 256GB SSD           | Intel Iris Plus Graphics 650 | macOS |        | 96095.8080  |             |   |

Then a separate column was created for IPS. It is also divided into 0 and 1.

Figure 12: Create column to IPS





The above bar plot shows the gap between laptops with and without an Ips. There seems to be a clear difference between the two. The number of non-touchscreens is very high.

Then the resolution is divided into two separate columns as the x-axis resolution and the y-axis resolution. They are named x\_res and y\_res. The reason for such separation is that it is easier for us to train the model and when the data is fed to the model in this way, the accuracy can be increased.

| []] | new        | - df[*s |                      |        | tr.split('x', n=1, expand             |                               |     |                        |                                 |       |        |             |             |     |                                  |       |
|-----|------------|---------|----------------------|--------|---------------------------------------|-------------------------------|-----|------------------------|---------------------------------|-------|--------|-------------|-------------|-----|----------------------------------|-------|
| 11  | df[<br>df[ |         | = new[0]<br>= new[1] |        |                                       |                               |     |                        |                                 |       |        |             |             |     |                                  |       |
| 0   | df.        | head()  |                      |        |                                       |                               |     |                        |                                 |       |        |             |             |     |                                  |       |
| D-  |            | Company | TypeName             | Inches | ScreenResolution                      | Cpu                           | Ram | Memory                 | Gpu                             | OpSys | Weight | Price       | Touchscreen | Ips | X_res                            | Y_res |
|     |            | Apple   | Ultrabook            |        | IPS Panel Retina Display<br>2560x1600 | Intel Core i5<br>2.3GHz       |     | 128GB SSD              | Intel Iris Plus<br>Graphics 640 | macOS |        | 71378.6832  |             |     | IPS Panel Retina<br>Display 2560 | 1600  |
|     |            | Apple   | Ultrabook            | 13.3   | 1440x900                              | Intel Core i5<br>1.8GHz       |     | 128GB Flash<br>Storage | Intel HD Graphics<br>6000       | macOS | 1.34   | 47895.5232  |             |     | 1440                             | 900   |
|     |            |         | Notebook             |        | Full HD 1920x1080                     | Intel Core i5 7200U<br>2.5GHz |     | 256GB SSD              | Intel HD Graphics<br>620        | No OS | 1.86   | 30636.0000  |             |     | Full HD 1920                     | 1080  |
|     |            | Apple   | Ultrabook            | 15.4   | IPS Panel Retina Display<br>2880x1800 | Intel Core i7<br>2.7GHz       |     | 512GB SSD              | AMD Radeon Pro<br>455           | macOS | 1.83   | 135195.3360 |             |     | IPS Panel Retina<br>Display 2880 | 1800  |
|     |            | Apple   | Ultrabook            |        | IPS Panel Retina Display<br>2560x1600 | Intel Core i5<br>3.1GHz       |     | 256GB SSD              | Intel Iris Plus<br>Graphics 650 | macOS | 1.37   | 96095.8080  |             |     | IPS Panel Retina<br>Display 2560 | 1600  |
|     |            |         |                      |        |                                       |                               |     |                        |                                 |       |        |             |             |     |                                  |       |

Figure 14: creating X\_res and Y\_res columns

| [33] | df[ |         | = df['X_n |        | <pre>replace(',','').str.findall(r'(</pre> | \d+\.?\d+)`).apply(           |     | x:x[0])                |                                 |       |        |             |             |     |       |       |
|------|-----|---------|-----------|--------|--------------------------------------------|-------------------------------|-----|------------------------|---------------------------------|-------|--------|-------------|-------------|-----|-------|-------|
| [34] | df. | head()  |           |        |                                            |                               |     |                        |                                 |       |        |             |             |     |       |       |
|      |     | Company | TypeName  | Inches | ScreenResolution                           | Сри                           | Ram | Memory                 | Gpu                             | OpSys | Weight | Price       | Touchscreen | Ips | X_res | Y_res |
|      |     | Apple   | Ultrabook |        | IPS Panel Retina Display<br>2560x1600      | Intel Core i5 2.3GHz          |     | 128GB SSD              | Intel Iris Plus Graphics<br>640 | macOS | 1.37   | 71378.6832  |             |     | 2560  | 1600  |
|      |     | Apple   | Ultrabook |        | 1440x900                                   | Intel Core i5 1.8GHz          |     | 128GB Flash<br>Storage | Intel HD Graphics 6000          | macOS | 1.34   | 47895.5232  |             |     | 1440  | 900   |
|      |     |         | Notebook  |        | Full HD 1920x1080                          | Intel Core i5 7200U<br>2.5GHz |     | 256GB SSD              | Intel HD Graphics 620           | No OS | 1.86   | 30636.0000  |             |     | 1920  | 1080  |
|      |     | Apple   | Ultrabook | 15.4   | IPS Panel Retina Display<br>2880x1800      | Intel Core i7 2.7GHz          |     | 512GB SSD              | AMD Radeon Pro 455              | macOS | 1.83   | 135195.3360 |             |     | 2880  | 1800  |
|      |     | Apple   | Ultrabook |        | IPS Panel Retina Display<br>2560x1600      | Intel Core i5 3.1GHz          |     | 256GB SSD              | Intel Iris Plus Graphics<br>650 | macOS | 1.37   | 96095.8080  |             |     | 2560  | 1600  |

*Figure 15: creating X\_res and Y\_res columns (code2)* 

Then the x\_res and y\_res columns were converted to int for ease of use.

| df['X_res'] | df['X_res'] | .astype('int' | ) |
|-------------|-------------|---------------|---|
| df['Y_res'] | df['Y_res'  | .astype('int' |   |



According to the image below, x\_res and y\_res have been converted to int64.

| {x}      | df.info()                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>D</b> | cclass 'pandas.core.fr<br>RangeIndex: 1303 entri<br>Data columns (total 19<br># Column                                                                                                                                                                                                                                                                                                                     | rame.DataFrame'><br>ies, 0 to 1302<br>5 columns):<br>Non-Null Count                                                                                                                                                                                                                                                                                               | Dtype                                                                                                                                           |
|          | <ul> <li>Company</li> <li>CypeName</li> <li>TypeName</li> <li>Z Inches</li> <li>Z Inches</li> <li>S CreenResolution</li> <li>4 Cpu</li> <li>Ram</li> <li>6 Memory</li> <li>6 Memory</li> <li>7 Gpu</li> <li>8 OpSys</li> <li>9 Weight</li> <li>10 Price</li> <li>11 Touchscreen</li> <li>11 Z Ips</li> <li>13 X,res</li> <li>14 Y,res</li> <li>14 Ypessi float32(1),fl</li> <li>Hopperor 122,GF</li> </ul> | 1303 non-null<br>1303 non-null | doject<br>doject<br>float64<br>doject<br>int32<br>doject<br>doject<br>doject<br>float32<br>float64<br>int64<br>int64<br>i), int64(A), object(7) |

Figure 17: data info (checking int)

Replacing inches, X and Y resolutions with PPI If you find the correlation of the column with the price using the corr method, we can see that the inches are not strongly correlated, but the X-axis

and Y has a very high resolution, so we can take advantage of that and convert those three columns into a single column called Pixel Per Inch (PPI). Ultimately, our goal is to improve performance by having fewer features.

[ ] df['ppi'] = (((df['X\_res']\*\*2) + (df['Y\_res']\*\*2))\*\*0.5/df['Inches']).astype('float')

#### Figure 18: PPI function

The following image shows how to drop screen resolution, inches, x\_res, y\_res columns.

| []  |             |                      |                                    |                            |                                                           |          |        |                                        |                      |                                                         |                         |                      |                                   |                   |        |         |                                |                   |       |            |  |
|-----|-------------|----------------------|------------------------------------|----------------------------|-----------------------------------------------------------|----------|--------|----------------------------------------|----------------------|---------------------------------------------------------|-------------------------|----------------------|-----------------------------------|-------------------|--------|---------|--------------------------------|-------------------|-------|------------|--|
|     |             | .head()              |                                    |                            |                                                           |          |        |                                        |                      |                                                         |                         |                      |                                   |                   |        |         |                                |                   |       |            |  |
|     |             | Company              | TypeName                           | Inches                     |                                                           | Cpu      | Ram    |                                        | Memory               |                                                         | Gpu                     | OpSys                | Weight                            | Price             | Touch  | screer  | n Ips                          | X_res             | Y_res | ppi        |  |
|     |             | Apple                | Ultrabook                          |                            | Intel Core is                                             | 5 2.3GHz |        | 128                                    | GB SSD               | Intel Iris Plus Grap                                    | hics 640                | macOS                |                                   | 71378.6832        |        |         |                                | 2560              | 1600  | 226.983005 |  |
|     |             | Apple                | Ultrabook                          | 13.3                       | Intel Core is                                             | 5 1.8GHz |        | 128GB Flast                            | 1 Storage            | Intel HD Graph                                          | nics 6000               | macOS                | 1.34                              | 47895.5232        |        |         |                                | 1440              | 900   | 127.677940 |  |
|     |             |                      | Notebook                           |                            | Intel Core i5 7200L                                       | J 2.5GHz |        | 256                                    | GB SSD               | Intel HD Grap                                           | hics 620                | No OS                | 1.86                              | 30636.0000        |        |         |                                | 1920              | 1080  | 141.211998 |  |
|     |             | Apple                | Ultrabook                          | 15.4                       | Intel Core i7                                             | 7 2.7GHz |        | 512                                    | GB SSD               | AMD Radeor                                              | Pro 455                 | macOS                | 1.83                              | 35195.3360        |        | C       |                                | 2880              | 1800  | 220.534624 |  |
|     |             | Apple                | Ultrabook                          |                            | Intel Core if                                             | 5 3.1GHz |        | 256                                    | GB SSD               | Intel Iris Plus Grap                                    | hics 650                | macOS                |                                   | 96095.8080        |        |         |                                | 2560              | 1600  | 226.983005 |  |
|     |             |                      |                                    |                            |                                                           |          |        |                                        |                      |                                                         |                         |                      |                                   |                   |        |         |                                |                   |       |            |  |
| [1  |             | .drop(col            | umns=['Ind                         |                            | es', 'Y_res'],i                                           | nplace=  |        |                                        |                      |                                                         |                         |                      |                                   |                   |        |         |                                |                   |       |            |  |
| £ 1 | df.         | head()               |                                    |                            |                                                           |          |        |                                        |                      |                                                         |                         |                      |                                   |                   |        |         |                                |                   |       |            |  |
|     |             | Company              | TypeName                           |                            | Сри                                                       | Ram      |        | Memory                                 |                      | Gpu                                                     | OpSys                   | Weight               | Pri                               | ce Touchso        | reen 1 | Eps     | i                              | pi                |       |            |  |
|     |             | Apple                | Ultrabook                          | Inte                       | el Core i5 2.3GHz                                         |          |        | 128GB SSD                              | Intel Iris           | Plus Graphics 640                                       | macOS                   |                      | 71378.68                          |                   |        |         | 26.9830                        | 005               |       |            |  |
|     |             | Apple                | Ultrabook                          | Inte                       | el Core i5 1.8GHz                                         |          | 28GB F | lash Storage                           | Intel                | HD Graphics 6000                                        | macOS                   | 1.34                 | 47895.52                          | 32                |        |         | 27.6779                        | 940               |       |            |  |
|     |             |                      | Notebook                           | Intel Core                 | i5 7200U 2.5GHz                                           |          |        | 256GB SSD                              | Inte                 | I HD Graphics 620                                       | No OS                   | 1.86                 | 30636.00                          | 00                |        |         | 141.2119                       | 998               |       |            |  |
|     | 3           | Apple                | Ultrabook                          | Inte                       | el Core i7 2.7GHz                                         |          |        | 512GB SSD                              | AM                   | D Radeon Pro 455                                        | macOS                   | 1.83                 | 135195.33                         | 60                |        | 1 2     | 20.5346                        | 524               |       |            |  |
|     |             |                      |                                    |                            |                                                           |          |        |                                        |                      |                                                         |                         |                      |                                   |                   |        |         |                                |                   |       |            |  |
|     | 1<br>2<br>3 | Apple<br>HP<br>Apple | Ultrabook<br>Notebook<br>Ultrabook | Inte<br>Intel Core<br>Inte | el Core i5 1.8GHz<br>i5 7200U 2.5GHz<br>el Core i7 2.7GHz |          | 28GB F | Tash Storage<br>256GB SSD<br>512GB SSD | Intel<br>Intel<br>AM | HD Graphics 6000<br>HD Graphics 620<br>D Radeon Pro 455 | macOS<br>No OS<br>macOS | 1.34<br>1.86<br>1.83 | 47895.52<br>30636.00<br>135195.33 | 132<br>100<br>160 |        | 0 1 0 1 | 27.6779<br>141.2119<br>20.5340 | 940<br>998<br>624 |       |            |  |

*Figure 19: drop (screen resolution, x\_res, y\_res, and inches)* 

### **Cleaning CPU column**

When you take the CPU column, it appears that it is also very noisy. As you can see from the diagram below, there are many types. There are 8 of Intel and 8 of AMD. Therefore, a separate column for CPU was separated as Intel other to put Intel i3, Intel i5, Intel i7, AMD processor and other Intel.



Figure 20: value count of CPU

First, in the CPU column, we can only train the model by CPU type, so we took only its name. It took only the first three words of the column.

| [] 4 | IŁ[ , ( | ipu Name | ']= df[   | 'Cpu'].apply(lambda x:"    | ".joi | n(x.split()[0:3]))  |                              |       |        |             |             |     |            |               |
|------|---------|----------|-----------|----------------------------|-------|---------------------|------------------------------|-------|--------|-------------|-------------|-----|------------|---------------|
|      | lf.ho   | ad()     |           |                            |       |                     |                              |       |        |             |             |     |            |               |
|      |         | ompany   | TypeName  | Сри                        | Ram   | Memory              | Gpu                          | OpSys | Weight | Price       | Touchscreen | Ips | ррі        | Cpu Name      |
|      | 0       | Apple    | Ultrabook | Intel Core i5 2.3GHz       |       | 128GB SSD           | Intel Iris Plus Graphics 640 | macOS | 1.37   | 71378.6832  |             |     | 226.983005 | Intel Core i5 |
|      |         | Apple    | Ultrabook | Intel Core i5 1.8GHz       |       | 128GB Flash Storage | Intel HD Graphics 6000       | macOS | 1.34   | 47895.5232  |             |     | 127.677940 | Intel Core 15 |
|      | 2       |          | Notebook  | Intel Core I5 7200U 2.5GHz |       | 256GB SSD           | Intel HD Graphics 620        | No OS | 1.86   | 30636.0000  |             |     | 141.211998 | Intel Core I5 |
|      | 3       | Apple    | Ultrabook | Intel Core i7 2.7GHz       |       | 512GB SSD           | AMD Radeon Pro 455           | macOS | 1.83   | 135195.3360 |             |     | 220.534624 | Intel Core i7 |
|      | 4       | Apple    | Ultrabook | Intel Core i5 3.1GHz       |       | 256GB SSD           | Intel Iris Plus Graphics 650 | macOS | 1.37   | 96095.8080  |             |     | 226.983005 | Intel Core i5 |
|      |         |          |           |                            |       |                     |                              |       |        |             |             |     |            |               |

Figure 21: CPU column cleaning

Then separate CPU types with a function as follows.

| def f<br>if<br>els<br>i | fetch_pr<br>text ==<br>return f<br>se:<br>if text.<br>return<br>else:<br>return | rocessor(t<br>'Intel C<br>ext<br>split()[0<br>'Other I<br>'AMD Pro | <pre>ext):<br/>ore i7' or text == 'Inte<br/>] == 'Intel':<br/>ntel Processor'<br/>cessor'</pre> |        | ) i5' or text == 'In |                              |       |        |             |             |     |            |               |               |
|-------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------|----------------------|------------------------------|-------|--------|-------------|-------------|-----|------------|---------------|---------------|
| df['(                   |                                                                                 | d'] = df[                                                          | 'Cpu Name'].apply(fetch_                                                                        | proces | sor)                 |                              |       |        |             |             |     |            |               |               |
| df.he                   | ead()                                                                           |                                                                    |                                                                                                 |        |                      |                              |       |        |             |             |     |            |               |               |
|                         | ompany                                                                          | TypeName                                                           | Сри                                                                                             | Ram    | Memory               | Gpu                          | OpSys | Weight | Price       | Touchscreen | Ips | ррі        | Cpu Name      | Cpu brand     |
|                         | Apple                                                                           | Ultrabook                                                          | Intel Core i5 2.3GHz                                                                            |        | 128GB SSD            | Intel Iris Plus Graphics 640 | macOS |        | 71378.6832  |             |     | 226.983005 | Intel Core i5 | Intel Core i5 |
|                         | Apple                                                                           | Ultrabook                                                          | Intel Core i5 1.8GHz                                                                            |        | 128GB Flash Storage  | Intel HD Graphics 6000       | macOS | 1.34   | 47895.5232  |             |     | 127.677940 | Intel Core i5 | Intel Core i5 |
|                         |                                                                                 | Notebook                                                           | Intel Core i5 7200U 2.5GHz                                                                      |        | 256GB SSD            | Intel HD Graphics 620        | No OS | 1.86   | 30636.0000  |             |     | 141.211998 | Intel Core i5 | Intel Core i5 |
|                         | Apple                                                                           | Ultrabook                                                          | Intel Core i7 2.7GHz                                                                            |        | 512GB SSD            | AMD Radeon Pro 455           | macOS | 1.83   | 135195.3360 |             |     | 220.534624 | Intel Core i7 | Intel Core i7 |
|                         | Apple                                                                           | Ultrabook                                                          | Intel Core i5 3.1GHz                                                                            |        | 256GB SSD            | Intel Iris Plus Graphics 650 | macOS |        | 96095.8080  |             |     | 226.983005 | Intel Core i5 | Intel Core i5 |
|                         |                                                                                 |                                                                    |                                                                                                 |        |                      |                              |       |        |             |             |     |            |               |               |

*Figure 22: CPU column cleaning (code 2)* 

In this case, the following bar chart shows the types of CPU and how many of them there are.



Figure 23: bar chart of CPU brands

This shows that Intel i7 exceeds 500 laptops in the data set. Intel i5s are second. They seem to exceed 400. This shows that the Intel i3 and other Intel processors are at the same level. AMD is the lowest among CPU types.



Figure 24: Price and CPU bar chart

The above graph shows the variation in laptop price depending on the type of CPU. It can be seen that the Intel i7 affects the price of the laptop here. Intel i5 shows the second highest value. Other types show a similar pattern.

0 weight Price Ips Cpu brand 128GB SSD Intel Iris Plus 71378 6832 0 1 226.983005 Intel Core i5 47895 5232 **GB Flash Storage** Intel HD G el Core i5 512GB SSD 135195 3360 1 220.534624 Intel Core i7 Intel Core is GB SSD 1 226.983005

Then the two columns CPU name and CPU were dropped from the dataset.

Figure 25: data set (drop CPU and CPU name)

#### **Cleaning Ram column**

There is nothing much to do in this column. Because the word GB was removed from the above and made numeric.



#### Figure 26: Ram value count

This ram column is 2, 4, 6, 8, 12, 16, 32, and 64. According to the picture above, there are many of them with 8 GB ram size. It exceeds the size of 600. The second is 4GB and the third is 16GB. Their sizes are between 300-400 and 200 respectively in the dataset. Others are minor.



Figure 27: Price and ram (Bar chart)

As can be seen from this, the change in the price of the laptop can be indicated on the size of the ram. A laptop with 64GB ram seems to be very expensive. Others appear to be declining. It appears that the price is affected by the nature of the ram.

### **Cleaning Memory column**

Figure 28: Value count of memory

As can be seen from this, there are many types of memory. Therefore, they had to be divided into separate columns.



Figure 29: Creating columns of Memory

Here, HDD, SSD, Hybrid, Flash Storage are separated separately. It is also divided into 1 and 0.

| [] df | F.hea | ad()  |           |     |                   |                              |       |        |             |             |     |            |               |     |     |        |               |
|-------|-------|-------|-----------|-----|-------------------|------------------------------|-------|--------|-------------|-------------|-----|------------|---------------|-----|-----|--------|---------------|
|       | Cor   | mpany | TypeName  | Ram | Memory            | Gpu                          | OpSys | Weight | Price       | Touchscreen | Ips | ppi        | Cpu brand     | HDD | SSD | Hybrid | Flash_Storage |
|       |       | Apple | Ultrabook |     | 128 SSD           | Intel Iris Plus Graphics 640 | macOS |        | 71378.6832  |             |     | 226.983005 | Intel Core i5 |     |     |        |               |
|       |       | Apple | Ultrabook |     | 128 Flash Storage | Intel HD Graphics 6000       | macOS | 1.34   | 47895.5232  |             |     | 127.677940 | Intel Core i5 |     |     |        | 128           |
|       |       |       | Notebook  |     | 256 SSD           | Intel HD Graphics 620        | No OS |        | 30636.0000  |             |     | 141.211998 | Intel Core i5 |     | 256 |        |               |
| 3     |       | Apple | Ultrabook |     | 512 SSD           | AMD Radeon Pro 455           | macOS | 1.83   | 135195.3360 |             |     | 220.534624 | Intel Core i7 |     | 512 |        |               |
|       |       | Apple | Ultrabook |     | 256 SSD           | Intel Iris Plus Graphics 650 | macOS |        | 96095.8080  |             |     | 226.983005 | Intel Core i5 |     | 256 |        |               |

Figure 30: creating columns of memory (data set)

Then the memory column was dropped from the data set.

|  | .drop(col | umns=['Mem | ory'] | ,inplace=True)               |       |        |             |             |     |            |               |     |     |        |               |
|--|-----------|------------|-------|------------------------------|-------|--------|-------------|-------------|-----|------------|---------------|-----|-----|--------|---------------|
|  |           |            |       |                              |       |        |             |             |     |            |               |     |     |        |               |
|  | .head()   |            |       |                              |       |        |             |             |     |            |               |     |     |        |               |
|  | Company   | TypeName   | Ram   | Gpu                          | OpSys | Weight | Price       | Touchscreen | Ips | ppi        | Cpu brand     | HDD | SSD | Hybrid | Flash_Storage |
|  | Apple     | Ultrabook  |       | Intel Iris Plus Graphics 640 | macOS |        | 71378.6832  |             |     | 226.983005 | Intel Core 15 |     |     |        |               |
|  | Apple     | Ultrabook  |       | Intel HD Graphics 6000       | macOS |        | 47895.5232  |             |     | 127.677940 | Intel Core i5 |     |     |        |               |
|  |           | Notebook   |       | Intel HD Graphics 620        | No OS | 1.86   | 30636.0000  |             |     | 141.211998 | Intel Core 15 |     | 256 |        |               |
|  | Apple     | Ultrabook  |       | AMD Radeon Pro 455           | macOS | 1.83   | 135195.3360 |             |     | 220.534624 | Intel Core i7 |     | 512 |        |               |
|  | Apple     | Ultrabook  |       | Intel Iris Plus Graphics 650 | macOS |        | 96095.8080  |             |     | 226.983005 | Intel Core i5 |     | 256 |        |               |
|  |           |            |       |                              |       |        |             |             |     |            |               |     |     |        |               |

Figure 31: data set (drop column of memory)

### **Cleaning GPU column**

| [ ] df['Gpu'].value_counts() |                                 |
|------------------------------|---------------------------------|
|                              |                                 |
| Intel HD Graphics 620        |                                 |
| Intel HD Graphics 520        |                                 |
| Intel LHD Graphics 620       |                                 |
| Nvidia GaEorca GTV 1950      | 66<br>66                        |
| hvidia Caronsa CTX 1050      | 00<br>40                        |
| NVIGIA GEFORCE GIX 1000      |                                 |
|                              |                                 |
| AMD Radeon R5 520            |                                 |
| AMD Radeon R7                |                                 |
| Intel HD Graphics 540        |                                 |
| AMD Radeon 540               |                                 |
| ARM Mali T860 MP4            |                                 |
| Name: Gpu, Length: 110.      | dtype: int64                    |
| numer opoj cengent zaoj      |                                 |
|                              |                                 |
| [ ] df['Gnu brand'] = df['Gn | at anniv(lambda viv snitt()[0]) |
| [] ur[ opd brand ] = ur[ op  | Linhbil(remon vivishir()[0])    |
|                              |                                 |

Figure 32: value count of GPU

As can be seen from this, GPUs also have a large amount of data. But for us, only the type is enough, so we entered the type and created a column.

| 0   |                                    | head()                             |                                  |       |                              |       |        |             |             |     |            |               |     |     |        |               |           |
|-----|------------------------------------|------------------------------------|----------------------------------|-------|------------------------------|-------|--------|-------------|-------------|-----|------------|---------------|-----|-----|--------|---------------|-----------|
| C∙  |                                    | Company                            | TypeName                         | Ram   | Gpu                          | OpSys | Weight | Price       | Touchscreen | Ips | ррі        | Cpu brand     | HDD | SSD | Hybrid | Flash_Storage | Gpu brand |
|     |                                    | Apple                              | Ultrabook                        |       | Intel Iris Plus Graphics 640 | macOS |        | 71378.6832  |             |     | 226.983005 | Intel Core i5 |     |     |        |               | Intel     |
|     |                                    | Apple                              | Ultrabook                        |       | Intel HD Graphics 6000       | macOS | 1.34   | 47895.5232  |             |     | 127.677940 | Intel Core i5 |     |     |        |               | Intel     |
|     |                                    |                                    | Notebook                         |       | Intel HD Graphics 620        |       | 1.86   | 30636.0000  |             |     | 141.211998 | Intel Core i5 |     | 256 |        |               | Intel     |
|     |                                    | Apple                              | Ultrabook                        |       | AMD Radeon Pro 455           | macOS | 1.83   | 135195.3360 |             |     | 220.534624 | Intel Core i7 |     |     |        |               | AMD       |
|     |                                    | Apple                              | Ultrabook                        |       | Intel Iris Plus Graphics 650 | macOS |        | 96095.8080  |             |     | 226.983005 | Intel Core i5 |     | 256 |        |               | Intel     |
| _   |                                    |                                    |                                  |       |                              |       |        |             |             |     |            |               |     |     |        |               |           |
| []] | df[                                |                                    | nd"].value                       | _cour | ts()                         |       |        |             |             |     |            |               |     |     |        |               |           |
|     | Inte<br>Nvie<br>AMD<br>ARM<br>Name | el 72<br>dia 46<br>18<br>e: Gpu br | 2<br>00<br>1<br>1<br>•and, dtype |       | t64                          |       |        |             |             |     |            |               |     |     |        |               |           |
| []  |                                    | = df[df[                           |                                  |       | 'ARM']                       |       |        |             |             |     |            |               |     |     |        |               |           |

Figure 33: data set (creating GPU)

As you can see the gpu types are mentioned in the above image. It is a data containing only one type. It cannot affect our model. So it was removed.



Figure 34: Price and GPU bar chart

As seen here, laptops with NVidia are expensive. Second is Intel and third is AMD. The gpu also affects the price.

| Image: constraint of the state in there in there state in there in the state in the state in the st | 11 | df. | drop(colu | ımns=['Gpu | '],ir | place=Tr | rue)   |             |             |     |            |               |     |     |        |               |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----------|------------|-------|----------|--------|-------------|-------------|-----|------------|---------------|-----|-----|--------|---------------|-----------|
| CompanyTypeNameRainOpSysWeightPriceTouchscreentTysppCpu brandH00S50HybridPlash_StorageGpu brand0AppleUllrabook8macOS1.3771378.683201226.983005Intel Core I5012800Intel1AppleUllrabook8macOS1.3447895.5232001276.97340Intel Core I5000128012801281012HPNotebook8No OS1.8830636.000000141.211988Intel Core I5025001013AppleUllrabook16macOS1.8335195.336001220.534624Intel Core I5051200AMD4AppleUllrabook8macOS1.3796095.808001226.893005Intel Core I5025600Intel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | df. | head()    |            |       |          |        |             |             |     |            |               |     |     |        |               |           |
| 0         Apple         Ultrabook         8         macOS         1.37         71378.6832         0         1         226.983005         Intel Core i5         0         128         0         Intel           1         Apple         Ultrabook         8         macOS         1.34         47895.5232         0         0         127.677940         Intel Core i5         0         0         128         Intel           2         HP         Notebook         8         No OS         1.86         30636.0000         0         0         141.211998         Intel Core i5         0         256         0         Intel           3         Apple         Ultrabook         16         macOS         1.83         135195.3360         0         1         220.534624         Intel Core i7         0         512         0         AMD           4         Apple         Ultrabook         8         macOS         1.37         96095.8080         0         1         226.983005         Intel Core i5         0         256         0         Intel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     | Company   | TypeName   | Ram   | OpSys    | Weight | Price       | Touchscreen | Ips | ppi        | Cpu brand     | HDD | SSD | Hybrid | Flash_Storage | Gpu brand |
| 1         Apple         Ultrabook         8         macOS         1.34         47895.5232         0         0         127.677940         Intel Core i5         0         0         128         Intel           2         HP         Notebook         8         No OS         1.86         30636.0000         0         0         141.211998         Intel Core i5         0         256         0         0         Intel           3         Apple         Ultrabook         16         macOS         1.83         135195.3360         0         1         220.534624         Intel Core i7         0         512         0         0         AMD           4         Apple         Ultrabook         8         macOS         1.37         96095.8080         0         1         226.983005         Intel Core i5         0         256         0         Intel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |     | Apple     | Ultrabook  |       | macOS    |        | 71378.6832  |             |     | 226.983005 | Intel Core i5 |     |     |        |               | Intel     |
| 2         HP         Notebook         8         No OS         1.86         30636.0000         0         0         141.211998         Intel Core i5         0         256         0         0         Intel           3         Apple         Ultrabook         16         macOS         1.83         135195.3360         0         1         220.534624         Intel Core i7         0         512         0         AMD           4         Apple         Ultrabook         8         macOS         1.37         96095.8080         0         1         226.983005         Intel Core i5         0         256         0         Intel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     | Apple     | Ultrabook  |       | macOS    | 1.34   | 47895.5232  |             |     | 127.677940 | Intel Core i5 |     |     |        | 128           | Intel     |
| 3         Apple         Ultrabook         16         macOS         1.83         135195.3360         0         1         220.534624         Intel Core i7         0         512         0         0         AMD           4         Apple         Ultrabook         8         macOS         1.37         96095.8080         0         1         226.983005         Intel Core i5         0         256         0         Intel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |           | Notebook   |       | No OS    | 1.86   | 30636.0000  |             |     | 141.211998 | Intel Core i5 |     | 256 |        |               | Intel     |
| 4 Apple Ultrabook 8 macOS 1.37 96095.8080 0 1 226.983005 Intel Core i5 0 256 0 0 Intel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |     | Apple     | Ultrabook  |       | macOS    | 1.83   | 135195.3360 |             |     | 220.534624 | Intel Core i7 |     | 512 |        |               | AMD       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     | Apple     | Ultrabook  |       | macOS    |        | 96095.8080  |             |     | 226.983005 | Intel Core i5 |     |     |        |               | Intel     |

Figure 35: dropping gpu column

## **Cleaning Operating System**

| [] df['OpSys'].val                                                                                                        | lue_counts()                                              |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| Windows 10<br>No OS<br>Linux<br>Windows 7<br>Chrome OS<br>macOS<br>Mac OS X<br>Windows 10 S<br>Android<br>Name: OpSys, dt | 1072<br>66<br>45<br>13<br>8<br>8<br>2<br>2<br>type: int64 |  |  |  |

Figure 36: value count of operating system

As shown in the image above, there are many operating systems. Therefore, the most common windows operating system is put separately, mac is separately and others are put in the OS column as others.

|    |     | f cat_os(:<br>if inp<br>retu<br>elif inp<br>retu<br>else:<br>retu | inp):<br>== 'Window<br>urn 'Windo<br>o == 'macO<br>urn 'Mac'<br>urn 'Other | s 10'<br>ws'<br>S' or<br>s/No | or inp<br>inp ==<br>OS/Linux |        | ows 7° or in<br>X°: |             |     |            |               |     |     |        |               |           |                    |  |
|----|-----|-------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|------------------------------|--------|---------------------|-------------|-----|------------|---------------|-----|-----|--------|---------------|-----------|--------------------|--|
|    | df[ |                                                                   | ff['OpSys'                                                                 | ].app                         | ly(cat_o                     | os)    |                     |             |     |            |               |     |     |        |               |           |                    |  |
| •  |     | .head()                                                           |                                                                            |                               |                              |        |                     |             |     |            |               |     |     |        |               |           |                    |  |
| C• |     | Company                                                           | TypeName                                                                   | Ram                           | OpSys                        | Weight | Price               | Touchscreen | Ips | ррі        | Cpu brand     | HDD | SSD | Hybrid | Flash_Storage | Gpu brand | os                 |  |
|    |     | Apple                                                             | Ultrabook                                                                  |                               | macOS                        | 1.37   | 71378.6832          |             |     | 226.983005 | Intel Core i5 |     |     |        |               | Intel     | Мас                |  |
|    |     | Apple                                                             | Ultrabook                                                                  |                               | macOS                        | 1.34   | 47895.5232          |             |     | 127.677940 | Intel Core 15 |     |     |        | 128           | Intel     | Mac                |  |
|    |     |                                                                   | Notebook                                                                   |                               | No OS                        |        | 30636.0000          |             |     | 141.211998 | Intel Core i5 |     | 256 |        |               | Intel     | Others/No OS/Linux |  |
|    |     | Apple                                                             | Ultrabook                                                                  | 16                            | macOS                        | 1.83   | 135195.3360         |             |     | 220.534624 | Intel Core i7 |     | 512 |        |               | AMD       | Мас                |  |
|    |     | Apple                                                             | Ultrabook                                                                  |                               | macOS                        | 1.37   | 96095.8080          |             |     | 226.983005 | Intel Core I5 |     | 256 |        |               | Intel     | Mac                |  |
|    |     |                                                                   |                                                                            |                               |                              |        |                     |             |     |            |               |     |     |        |               |           |                    |  |
|    |     | .drop(col                                                         | umns=[*0pS                                                                 |                               | inplace                      |        |                     |             |     |            |               |     |     |        |               |           |                    |  |
|    |     |                                                                   |                                                                            |                               |                              |        |                     |             |     |            |               |     |     |        |               |           |                    |  |

Figure 37: creating parts of windows

Then opsys dropped the column from the dataset.



*Figure 38: operating System (Bar chart)* 

The chart above shows the relationship between price and OS. Here the mac type ones are more expensive and the second one is the windows os laptop.

#### Correlations

Correlation can be taken as a very important thing when creating a prediction model. It can see how other data affects the data we predict.

| 0  | df.corr()   |           |          |           |          |             |           |           | 1         |
|----|-------------|-----------|----------|-----------|----------|-------------|-----------|-----------|-----------|
| C• |             | Inches    | Ram      | Weight    | Price    | Touchscreen | Ips       | X_res     | Y_res     |
|    | Inches      | 1.000000  | 0.237993 | 0.827631  | 0.068197 | -0.361735   | -0.114804 | -0.071245 | -0.095404 |
|    | Ram         | 0.237993  | 1.000000 | 0.383874  | 0.743007 | 0.116984    | 0.206623  | 0.433121  | 0.424437  |
|    | Weight      | 0.827631  | 0.383874 | 1.000000  |          | -0.294620   | 0.016967  | -0.032880 | -0.053846 |
|    | Price       | 0.068197  | 0.743007 | 0.210370  | 1.000000 | 0.191226    | 0.252208  | 0.556529  | 0.552809  |
|    | Touchscreen | -0.361735 | 0.116984 | -0.294620 |          | 1.000000    | 0.150512  | 0.351066  | 0.357930  |
|    | lps         | -0.114804 | 0.206623 | 0.016967  | 0.252208 | 0.150512    | 1.000000  | 0.281457  | 0.289030  |
|    | X_res       | -0.071245 | 0.433121 | -0.032880 | 0.556529 | 0.351066    | 0.281457  | 1.000000  | 0.994219  |
|    | Y_res       | -0.095404 | 0.424437 | -0.053846 | 0.552809 |             | 0.289030  | 0.994219  | 1.000000  |
|    |             |           |          |           |          |             |           |           |           |

Figure 39: correlations

The above image shows the correlation between all the data in the dataset. Regarding the model, what is important for us is how other data affects the price.

| [ ] df.corr()['Pri                                                                                              | ce']                                                                                                                                    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ram<br>Weight<br>Price<br>Touchscreen<br>Ips<br>Ppi<br>HOD<br>SSD<br>Hybrid<br>Flash_storage<br>Name: Price, dt | 6.742905<br>6.209867<br>1.600600<br>6.192917<br>6.253320<br>6.475368<br>-0.696891<br>6.670660<br>9.697942<br>-0.040067<br>type: float64 |  |  |  |

*Figure 40: correlation (code 2)* 



Figure 41: heat map correlation

The dataset created to train the model after all these cleaning works is given below.

|        | Company    | TypeName           | Ram | Weight | Touchscreen | Ips | ppi        | Cpu brand             | HDD  | SSD | Hybrid | Flash_Storage | Gpu brand | os                 |
|--------|------------|--------------------|-----|--------|-------------|-----|------------|-----------------------|------|-----|--------|---------------|-----------|--------------------|
|        | Apple      | Ultrabook          |     |        |             |     | 226.983005 | Intel Core i5         |      | 128 |        |               | Intel     | Mac                |
|        | Apple      | Ultrabook          |     | 1.34   |             |     | 127.677940 | Intel Core i5         | 0    |     |        | 128           | Intel     | Mac                |
|        |            | Notebook           |     | 1.86   |             |     | 141.211998 | Intel Core I5         |      | 256 |        |               | Intel     | Others/No OS/Linux |
|        | Apple      | Ultrabook          |     | 1.83   |             |     | 220.534624 | Intel Core i7         | 0    |     |        |               | AMD       | Mac                |
|        | Apple      | Ultrabook          |     |        |             |     | 226.983005 | Intel Core i5         |      | 256 |        |               | Intel     | Mac                |
|        |            |                    |     |        |             |     |            |                       |      |     |        |               |           |                    |
| 1298   | Lenovo     | 2 in 1 Convertible |     | 1.80   |             |     | 157.350512 | Intel Core i7         |      |     |        |               | Intel     | Windows            |
| 1299   | Lenovo     | 2 in 1 Convertible |     | 1.30   |             |     | 276.053530 | Intel Core i7         | 0    |     |        |               | Intel     | Windows            |
| 1300   | Lenovo     | Notebook           |     |        |             |     | 111.935204 | Other Intel Processor |      |     |        |               | Intel     | Windows            |
| 1301   |            | Notebook           |     | 2.19   |             |     | 100.454670 | Intel Core i7         | 1000 |     |        |               | AMD       | Windows            |
| 1302   | Asus       | Notebook           |     | 2.20   |             |     | 100.454670 | Other Intel Processor | 500  |     |        |               | Intel     | Windows            |
| 1302 m | ws × 14 cc | lumns              |     |        |             |     |            |                       |      |     |        |               |           |                    |

Figure 42: final data set

# 4. Model Training

### 4.1. Log normal transformation

Transformation using logarithms we can observe that the target variable's distribution is skewed to the right. The algorithm's performance will improve by changing it to a normal distribution. As you can see below, we converted the logarithm of the transform values into a normal distribution. We will thus take the price's logarithm and express the exponent when showing the findings while separating the dependent and independent variables.



Machine Learning Models for Predicting Laptop Prices Now that our data has been prepared, we know more about the dataset. In order to identify the optimal method with the best hyper parameter for maximum accuracy, let's start with the machine learning model. Library import.



#### **4.2.Import libraries**

 from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import rz\_score,mean\_absolute\_error

#### Figure 44: importing libraries

**Column Transformer** enables us to transform a specific set of columns. It helps us apply multiple transformations to multiple columns with a single fit () or fit\_transform () statement.

A machine learning **pipeline** is a predetermined series of operations carried out to create, implement, and track a machine learning model. A machine learning model's development, training, implementation, and monitoring are all mapped using this method. The procedure is frequently automated using it.

For use in machine learning, **one-hot Encoder** is the process of transforming category data into numerical data.

A crucial indicator for assessing the effectiveness of a regression machine learning model is the **R2 score**. The coefficient of determination, which is also known by the pronunciation R squared, it measures the variation in forecasts that the data set can account for.

The average discrepancy between the computed and real values is calculated using the **mean absolute error**.

#### 4.3.X and Y

| 1 | ] X = df<br>y = np | .drop(co]  | lumns=['Pu<br>'Price']) | rice'])   |     |        |             |     |            |                       |      |     |        |               |           |                    |
|---|--------------------|------------|-------------------------|-----------|-----|--------|-------------|-----|------------|-----------------------|------|-----|--------|---------------|-----------|--------------------|
|   |                    |            |                         |           |     |        |             |     |            |                       |      |     |        |               |           |                    |
|   |                    | Company    | τ                       | /peName   | Ram | Weight | Touchscreen | Ips | ррі        | Cpu brand             | HDD  | SSD | Hybrid | Flash_Storage | Gpu brand | os                 |
|   |                    | Apple      |                         | ltrabook  |     |        |             |     | 226.983005 | Intel Core i5         |      |     |        |               | Intel     | Mac                |
|   |                    | Apple      | U                       | Itrabook  |     | 1.34   |             |     | 127.677940 | Intel Core i5         |      |     |        | 128           | Intel     | Mac                |
|   |                    |            | N                       | otebook   |     | 1.86   |             |     | 141.211998 | Intel Core i5         |      | 256 |        |               | Intel     | Others/No OS/Linux |
|   |                    | Apple      | U                       | ltrabook  |     | 1.83   |             |     | 220.534624 | Intel Core i7         |      | 512 |        |               | AMD       | Mac                |
|   |                    | Apple      | U                       | Itrabook  |     |        |             |     | 226.983005 | Intel Core i5         |      | 256 |        |               | Intel     | Mac                |
|   |                    |            |                         |           |     |        |             |     |            |                       |      |     |        |               |           |                    |
|   | 1298               | Lenovo     | 2 in 1 Cor              | nvertible |     | 1.80   |             |     | 157.350512 | Intel Core i7         |      |     |        |               | Intel     | Windows            |
|   | 1299               | Lenovo     | 2 in 1 Cor              | vertible  |     | 1.30   |             |     | 276.053530 | Intel Core i7         |      | 512 |        |               | Intel     | Windows            |
|   | 1300               | Lenovo     | N                       | otebook   |     |        |             |     | 111.935204 | Other Intel Processor |      |     |        |               | Intel     | Windows            |
|   | 1301               | HP         | N                       | otebook   |     | 2.19   |             |     | 100.454670 | Intel Core i7         | 1000 |     |        |               | AMD       | Windows            |
|   | 1302               | Asus       | N                       | otebook   |     | 2.20   |             |     | 100.454670 | Other Intel Processor | 500  |     |        |               | Intel     | Windows            |
|   | 1302 ro            | ws × 14 co | olumns                  |           |     |        |             |     |            |                       |      |     |        |               |           |                    |

Figure 45: X and Y values

X is assigned feature variable by dropping "price" column because the column is the targeted variable Y.



Figure 46: Y

#### 4.4.Implementing the pipe line



Figure 47: pipeline

We are currently developing a pipeline to streamline the training and testing process. We first use a column transformer to encode the categorical variables, which is the first step. Then we create an object in our algorithm and pass step two to fillinin. Using pipeline objects, we predict scores on new data and show accuracy.

#### 4.5.Selecting Best model



Figure 48: import models

I have imported many models here. But I chose only 4 of these.



Figure 49: Lasso regression

First choose the lasso model. The R2 score was 0.8071853945317105 and the MAE value was 0.21114361613472565.



Figure 50: Decision tree

Then I choose the decision tree model. The R2\_score was 0.8466456692979233 and the MAE value was 0.1806340977609143.



Figure 51: Linear regression

Then I choose the linear regression model. The R2\_Score was 0.8073277448418521 and the MAE value was 0.21017827976429174.



Figure 52: Random Forest

Then I choose the random forest model. The R2\_Score was 0.8873402378382488 and the MAE value was 0.15860130110457718.

Machine Learning Model for Predicting Laptop Prices We changed the index of the encrypted columns and the means to send the remaining numeric columns as-is in the first phase of category coding. Random Forest is my absolute favorite and has the finest accuracy I've experienced. But if you change the algorithm and its inputs, you may use this code again. A random woodland is displayed. Hyper parameter matching may be done using GridsearchCV or Random Search CV. The characteristics can be expanded as well, but the random forest is unaffected.

# 5. Creating GUI

I used python to create the GUI. Also used libraries like numpy and pandas.

| 1 : | tmport streamlit as st                                          |  |
|-----|-----------------------------------------------------------------|--|
| 2   |                                                                 |  |
| 3 1 |                                                                 |  |
| -4  |                                                                 |  |
| 5   |                                                                 |  |
| 6   |                                                                 |  |
| 7   |                                                                 |  |
| 8   |                                                                 |  |
| 9   |                                                                 |  |
| 10  |                                                                 |  |
| 11  |                                                                 |  |
| 12  |                                                                 |  |
| 13  |                                                                 |  |
| 14  |                                                                 |  |
| 15  |                                                                 |  |
| 16  | <pre>type = st.selectbox('Type', df['TypeName'].unique())</pre> |  |
| 17  |                                                                 |  |
| 18  |                                                                 |  |
| 19  | ram = st.selectbox('RAM(in GB)', [2_4_6_8_12_224_32_64])        |  |
| 20  |                                                                 |  |
| 21  |                                                                 |  |
| 22  | weight = st.number_input( weight of the laptop')                |  |
| 23  |                                                                 |  |
| 24  | Alouchiscreen                                                   |  |
| 24  |                                                                 |  |
| 27  |                                                                 |  |
| 28  |                                                                 |  |
| 29  |                                                                 |  |
| 30  |                                                                 |  |
| 31  |                                                                 |  |
|     |                                                                 |  |

Figure 53: python code 1



Figure 54: python code 2

| <pre>\$50 = \$t.selectnox('SSU(10 UB)'_[U_B_126_296_314_1024])</pre>                                |          |
|-----------------------------------------------------------------------------------------------------|----------|
| <pre>gpu = st.selectbox('GPU'_df['Gpu brand'].unique())</pre>                                       |          |
|                                                                                                     |          |
|                                                                                                     |          |
| Tif at hutton('Peadict Price').                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
| if touchscreen == 'Yes'-                                                                            |          |
| touchscreen = 1                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
| Y_res = int(resolution.split('x')[1])                                                               |          |
| <pre>ppi = (((X_res++2) + (Y_res++2))++0.5)/ (screen_size)</pre>                                    |          |
| <pre>query = np.array([company_type_ram_meight_touchscreen_ips_ppi_cpu_hdd_ssd_gpu_cs])</pre>       |          |
| query = query.reshape(1_12)                                                                         |          |
| st.title("The predicted price of this configuration is " + str(int(np.exp(pipe.predict(query)[0]))) |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     |          |
|                                                                                                     | <b>2</b> |
|                                                                                                     |          |

Figure 55: python code3

| Laptop Predictor     |  |
|----------------------|--|
| Brand                |  |
| Apple                |  |
| Туре                 |  |
| Ultrabook            |  |
| RAM(in GB)           |  |
|                      |  |
| Weight of the Laptop |  |
| 0.00                 |  |
| Touchscreen          |  |
| No                   |  |
| IPS                  |  |
| No                   |  |
|                      |  |



First we load the previously saved model and data frame. Then, depending on the training data columns, we design an HTML form with each user input field. We set the first parameter in the category columns as the name of the input field, and the second parameter as the select, which is just the individual categories in the dataset. We offer users added value or devaluation in the digital world. When the prediction node is active, it creates a 2D input list, encodes the variable, and sends it to the model to display the prediction on the screen.

| Laptop Predictor     |  |
|----------------------|--|
| Brand                |  |
| Asus                 |  |
| Туре                 |  |
| Gaming               |  |
| RAM(in GE)           |  |
|                      |  |
| Weight of the Laptop |  |
| 1.50                 |  |
| Touchscreen          |  |
| No                   |  |
| IPS                  |  |
| Yes                  |  |
| Screen Size          |  |
| 14.00                |  |
| Screen Resolution    |  |

Figure 57: example predict code1

| CPU                                           |        |
|-----------------------------------------------|--------|
| Intel Core i5                                 |        |
| HDD(in GB)                                    |        |
|                                               |        |
| SSD(in GB)                                    |        |
| 512                                           |        |
| GPU                                           |        |
| Nvidia                                        |        |
| os                                            |        |
| Windows                                       |        |
|                                               |        |
| The predicted price of this configur is 76120 | ration |
| is 76120                                      |        |

Figure 58: example predict code2



Figure 59: system EXE file

After all the work thus converted to an EXE file.

# Conclusion

The machine learning model training portion of this work is complete. I've selected a laptop price forecasting tool for this. People begin working from home when there are pandemic circumstances, which is the cause for this. Then, due to the popularity of laptops and the need for new ones, this software has been developed to enable users to quickly purchase the laptops they desire from an online retailer. I used a dataset containing information about laptops here. Company, Type Name, Inches, Screen Resolution, CPU, RAM, Memory, GPU, Operating System, Weight, and Price are the columns shown here. Here, decision tree, lasso, random forest, and linear regression are all employed as machine learning training methods. Random forest was chosen as the best model.